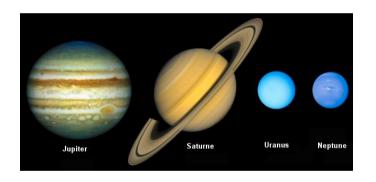
Planetary and satellite atmospheres in the far infrared range: Results and challenges

Thérèse Encrenaz

LESIA, Observatoire de Paris, CNRS

Workshop on the Future of Far-Infrared Space Astrophysics GSFC, Greenbelt, 12 – 13 May 2014


Key questions about the outer solar system formation and evolution (1)

How did the giants planets form and can we trace their migration?

- Elemental and isotopic ratios
 - H₂/He, D/H in HD, ¹⁵N/¹⁴N in NH₃, ¹³C/¹²C & ¹⁵N/¹⁴N in CO & HCN
- Disequilibrium species (CO, PH₃, HCN)
- > C/O in the deep atmosphere
- > Internal structure

Why are Uranus and Neptune so different?

- M(Neptune) > M(Uranus) -> Why?
- Uranus tilted on the ecliptic -> Why?
- Same sizes and densities, but very different atmospheres
 - Neptune: Internal energy, strong vertical mixing...
 - -> different internal structures (convection inhibited in Uranus?)
 - A consequence of early history and migration?
- Possible tracers: Tropospheric CO, PH₃

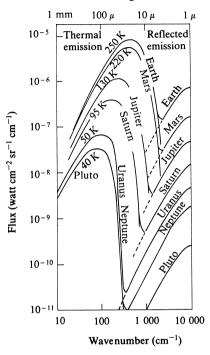
Key questions about the outer solar system formation and evolution (2)

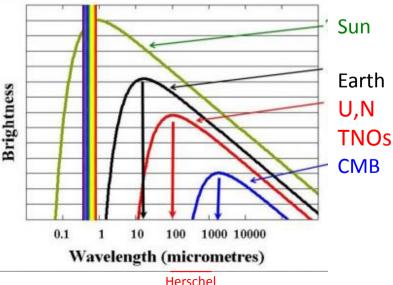
What can we learn from the diversity of distant small bodies (satellites & asteroids)?

- Search for tiny atmospheres (H₂O, CO, HCN)
- Search for water envelopes around asteroids (cf Ceres)
- Elemental and isotopic ratios in Titan
- Origin of water in Saturn's system

Can we characterize the oxygen flux in the outer solar system?

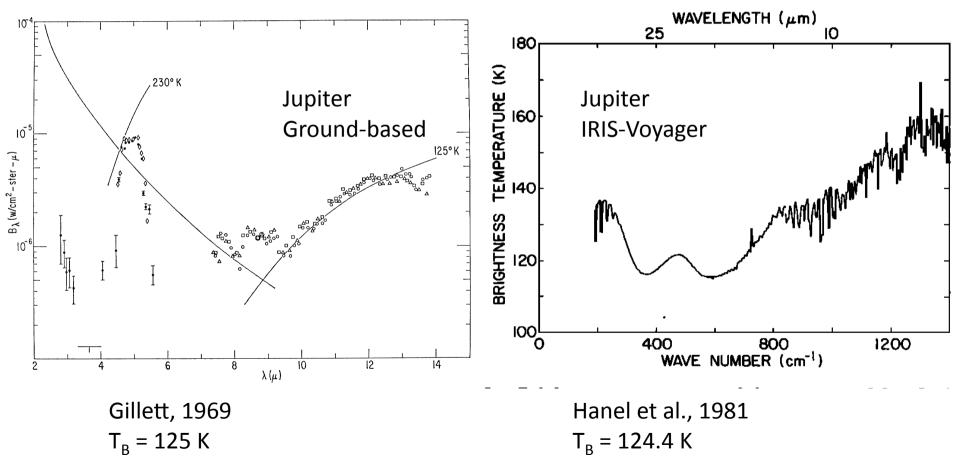
- Mapping of stratospheric H₂O in the giant planets
- Oxygen source: Icy Satellites? Comets? Meteoritic flux?




Thermal emission in the outer solar system is best observed by far IR/submm remote sensing Wavelength

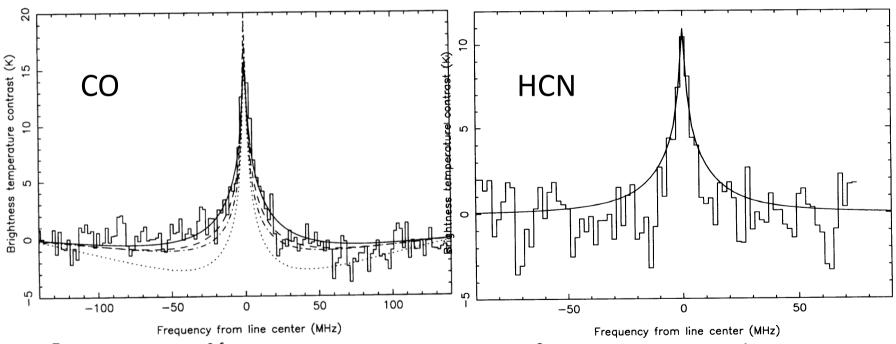
- Outer solar-system objects are cold
 - Giant planets: λ_{max} from 25 μm (Jupiter) to 60 μm (U, N)
 - Outer satellites: 30 μm (Galilean sat.) > 70 μm (Triton)
- In situ exploration is limited to a few targets
 - Uranus and Neptune were only explored by Voyager in the 1980s, no future mission planned
 - No planned mission toward Saturn system after Cassini

All strong molecular rotational transitions are found in the far IR/submm range


- Space is needed in 2 cases:
 - Observation of molecules not
 observable from Earth (H₂O, O₂, O₃...)
 - Large wavelength coverage (rotation temperatures, spectral surveys)

A milestone in infrared planetary science

Evidence for an internal energy source in the giant planets (except Uranus)

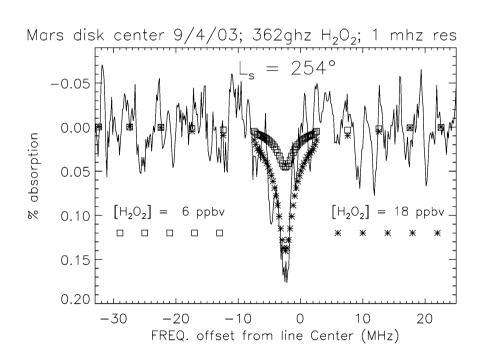


Jupiter: Evidence for an internal energy source, 1.7 times the absorbed solar energy (T_{eq} = 110 K) Probable origin: Gravitational contraction

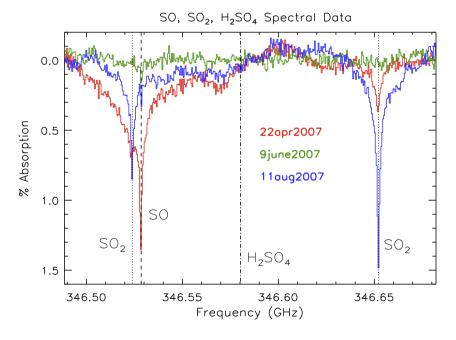
Planetary atmospheres: A milestone in the millimeter range (IRAM-30m)

CO and HCN in Neptune (1992)

- -> evidence for disequilibrium processes in Neptune
- -> evidence for differences in the atmospheres of Uranus and Neptune


CO: $6\ 10^{-7}$ (expected: $10^{-9\ from}$ interior) in Neptune, < $4\ 10^{-8}$ in Uranus (internal/external?)

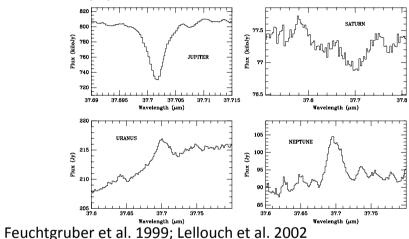
HCN: $3 \cdot 10^{-10}$ in Neptune, $< 8 \cdot 10^{-10}$ in Uranus (external)

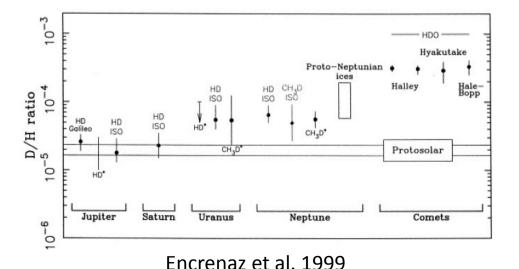

Rosenqvist et al. 1992

Planetary atmospheres: Milestones in the submillimeter range (JCMT)

- H₂O₂ on Mars (2004)
- Mesospheric sufur species and HCl on Venus (2010, 2012)

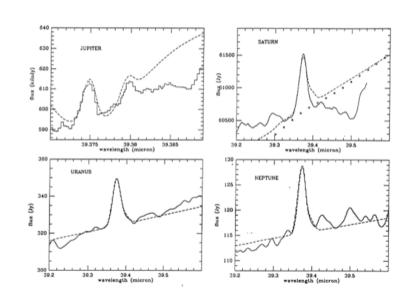
H₂O₂ on Mars (Clancy et al. 2004)


SO₂ & SO in the mesosphere of Venus (Sandor et al. 2010, 2012)


ISO Highlights on Giant Planets

Origins: D/H from H₂

Deuterium enriched in icy giants

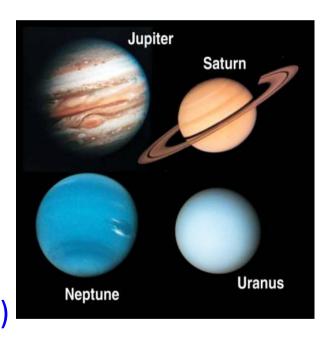

-> Support to nucleation model

External oxygen flux: source?

- -Local source (satellites, rings)
- -Interplanetary source
 - flux of meteoroids
 - comets (Jupiter: SL9?)

Feuchtgruber et al. 1997

Planetary & satellite atmospheres: Herschel Highlights Giant planets

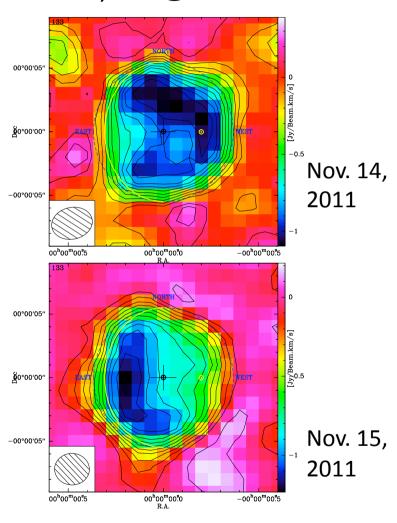

- D/H in Uranus and Neptune
- Stratospheric water in Jupiter, Saturn and Titan
- CO in Uranus (Cavalié et al. 2014)

Outer satellites

- Atmospheric composition of Titan (Moreno et al. 2011, 2012; Courtin et al. 2011
- Water torus of Enceladus (Hartogh + 2011)
- H₂O atmosphere around Ganymede and Callisto

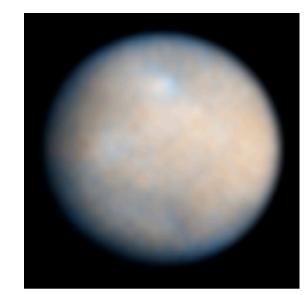
Asteroids: Detection of H₂O around Ceres

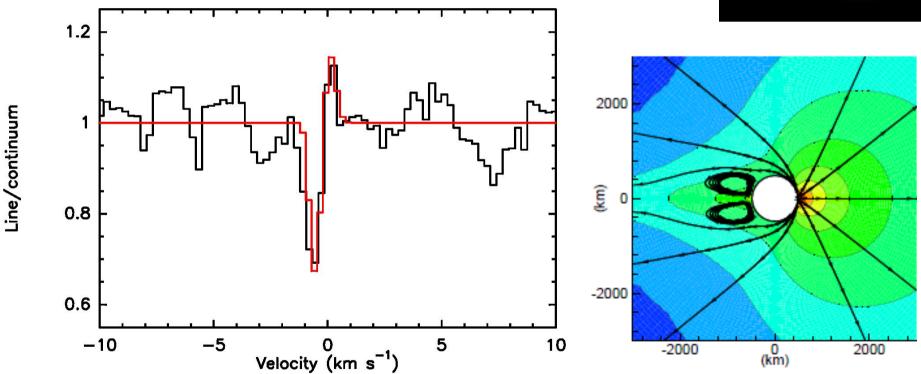
Planetary atmospheres with ALMA


Main objectives

- Search for minor species
- Dynamics & photochemistry
- Venus and Mars
 - CO mapping: T(z) + winds
 - Venus: HDO, Sulfur & Chlorine species
 - Mars: HDO, H₂O₂
- Giant planets & Titan
 - CO, HCN mapping: T(z) + winds
- Other outer satellites
 - Io: volcanism (SO₂)
 - Enceladus: HCN
 - Future studies: CO, HCN (Gal. Sat)

What will not be done:

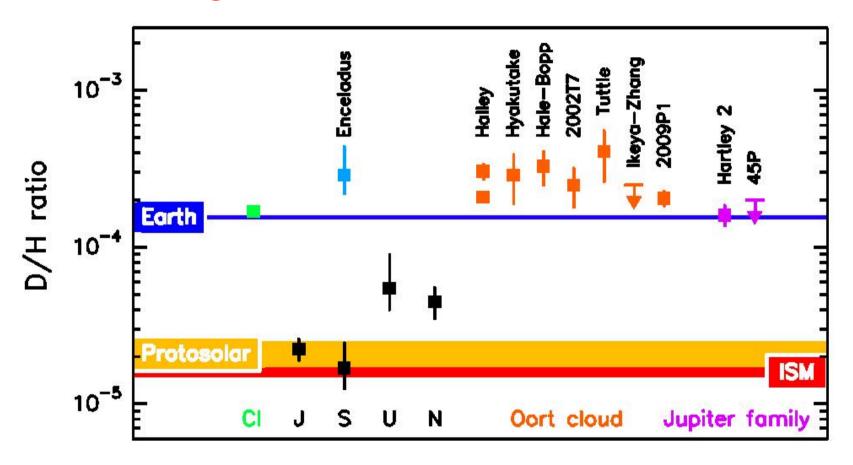

- $-H_2O, O_2, O_3$, halides...
- Broad spectral coverage


Venus, SO @ 346.5 GHz

Encrenaz et al. 2014

An unexpected discovery: The detection of water vapor around Ceres (HIFI)

557 GHz H₂O line detected with HIFI in October 2012 and March 2013 Kueppers et al., 2014


What is the frontier between asteroids and comets???

A water envelope around Ceres: What does it mean?

- Water-rich small bodies are expected to be found beyond the snow line
- The presence of water around Ceres might suggest that some icy bodies migrated inward
- Would also explain the presence of hydrated minerals at the surface of Ceres
- Exploring the water content of asteroids is important as a possible tracer of their migration
- Will also help to identify the origin of terrestrial water

What is the origin of terrestrial oceans?

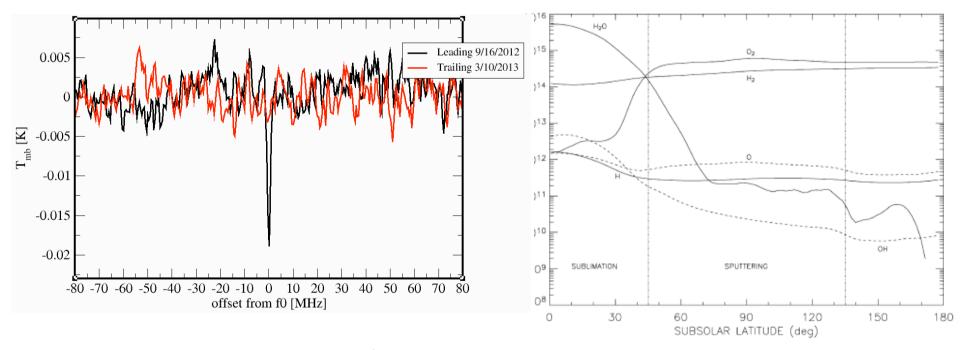
A diagnostic: the D/H ratio in water

Lis et al. 2013

$$\begin{split} & [D/H]_E = 1/\ 2\ x\ [D/H]_{Oort\text{-}cloud\text{-}comets} \\ & [D/H]_E = [D/H]_{CC\text{-}Meteorites}\ but\ also = [D/H]_{Kuiper\text{-}Belt\text{-}comets} \end{split}$$

-> Origin of oceans: D-type MBA or Kuiper Belt comets?

Water envelopes around small bodies: What to do next?


- Search for water envelopes around a variety of asteroids:
 - Outer main belt asteroids (possible origin of terrestrial water)
 - Centaurs near perihelion
 - Continuum flux: about 1 Jy for an MBA with 100 km diameter
- What is required?
 - Heterodyne spectroscopy
 - Size about 100 km -> gain of factor 100 in sensitivity vs Herschel/
 HIFI (-> cooled telescope)
 - No need for spatial resolution
- Which instrument?
 - CALISTO, MMSO

Water envelopes around small bodies Desired Measurement Capabilities

Parameter	Units	Value or Range
Wavelength range	μm	180 (1167 GHz)
Angular resolution	arcsec	2-3 arcsec
Spectral resolution, $(\lambda/\Delta\lambda)$	dimensionless	10 ⁶
Continuum sensitivity	μͿγ	1000
Spectral line sensitivity	10 ⁻¹⁹ W m ⁻²	0.01
Instantaneous FoV	arcmin	5 x 5 arcsec
Number of target fields	dimensionless	
Field of Regard	sr	

Another surprise from Herschel/HIFI: Water vapor on Ganymede and Callisto (557 GHz)

H2O @ 557 GHz on Ganymede, Sept. 2012 (HIFI) P. Hartogh, Herschel Conference, Oct. 2013

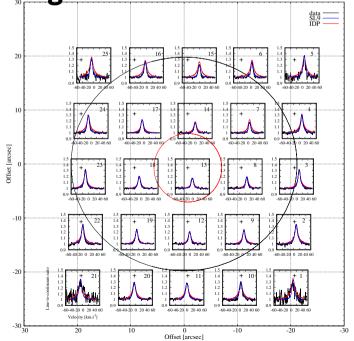
Distribution of H₂O and other species as a function of subsolar latitude in Ganymede's atmosphere (M. L. Marconi, Icarus, 2007)

What to do next? Mapping water envelopes of satellites & large asteroids

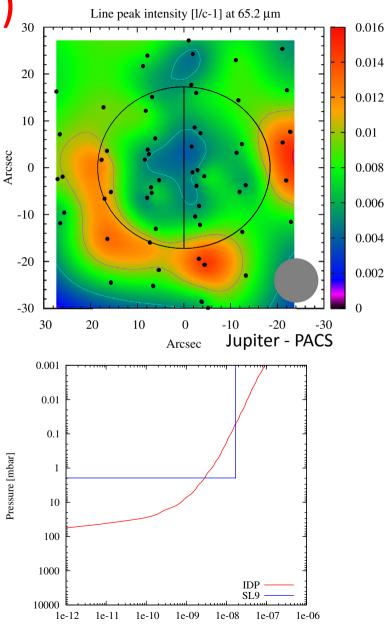
- **Objective:** Determine the distribution of water (trailing/leading sides on Ganymede, localized sources...)
- What is required?
 - Heterodyne spectroscopy @ 1167 GHz
 - Spatial resolution
- Ganymede is 1.3 arcsec in diameter → FOV: 0.6 arcsec (5 points over the disk)
- Fcont(G) = 26 Jy, in FOV: 1.4 Jy
- Line is seen in absorption (about 20%) Expected signal: 0.3 Jy
- -> Sensitivity: Factor 16 vs Herschel/HIFI
- Spatial resolution: 60 m baseline interferometer
- Which instrument? ESPRIT

Water mapping on Ganymede Desired Measurement Capabilities

Parameter	Units	Value or Range
Wavelength range	μm	180 (1670 GHz)
Angular resolution	arcsec	0.6 arcsec
Spectral resolution, $(\lambda/\Delta\lambda)$	dimensionless	10 ⁶
Continuum sensitivity	μЈу	2000
Spectral line sensitivity	10 ⁻¹⁹ W m ⁻²	0.02
Instantaneous FoV	arcmin	2 x 2 arcsec
Number of target fields	dimensionless	
Field of Regard	sr	

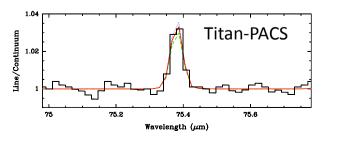

Water mapping in Jupiter with Herschel (PACS/HIFI)

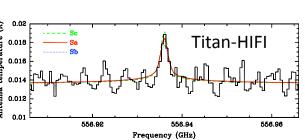
Line peak intensity [1/c-1] at 65.2 μm

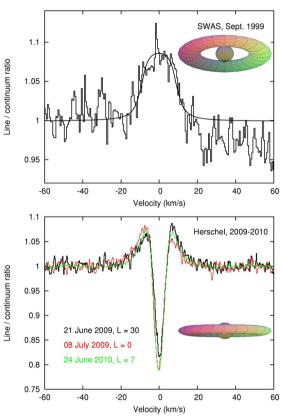

H₂O in Jupiter (PACS/HIFI)
 Cavalié et al. 2013

- H₂O is above the 2 mbar level
- Decreases from south to north latitudes


— > Origin must be the SL9 collision




Mixing ratio



The origin of water in the system of Saturn

- Detection of the water torus generated by Enceladus (HIFI)
- Cryovolcanism on Enceladus has been reported by Cassini
- Using appropriate geometry, HIFI has detected the H₂O torus generated by Enceladus, in absorption in front of the H₂O emission of Saturn
- H₂O in Titan (PACS/HIFI) Moreno +13
- Oxygen flux is weaker than previously inferred from ISO
 - > Enceladus cryovolcanim is sufficient to explain
 Saturn & Titan's external water

Hartogh et al. 2011

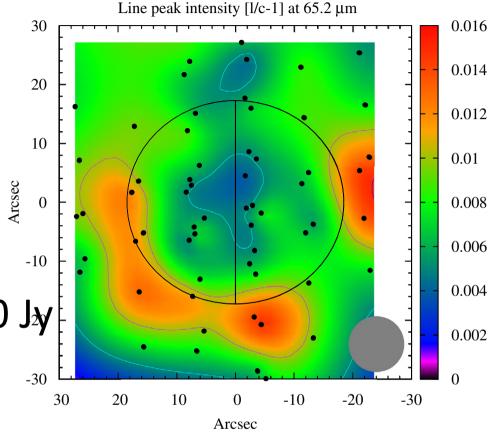
What to do next? Water mapping on Uranus and Neptune

- Stratospheric water detected on Neptune with ISO, origin unknown
- Objective: Determine the origin of stratospheric water (comets, meteoroids) and its temporal evolution
- Two kinds of measurements needed:
 - Mapping @ 60 μ m, R = 3000, FOV = 0.5 arcsec (PACS-type)
 - Mapping @ 1670 GHz, $R = 10^6$, FOV = 1 arcsec (HIFI-type)
- Flux in H_2O line is comparable to Jupiter for equal FOV ($T_B = 150 \text{ K}$)

a. H₂O mapping of Neptune @ 60 μm

On Jupiter with PACS:

Beam = 9 arcsec (Cavalié et al.2013 ->)


FOV equired on Neptune

(2 arcsec): 0.5 arcsec

Fcont(Neptune)/beam = 10 J_y

Fline(N) = $20 \ 10^{-19} \ \text{W/m}^2$

-> Sancitivity: Eactor 200 vs DACS/

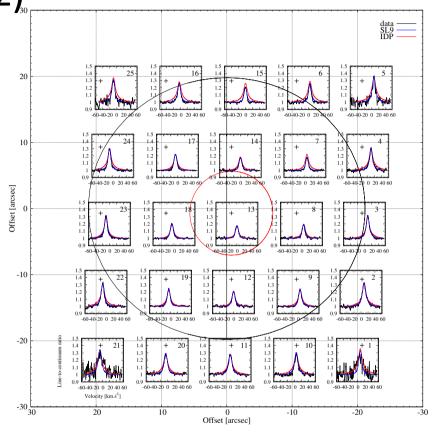
Sensitivity: Factor 300 vs PACS/Herschel Spatial resolution: 60 m baseline interferometer Which instrument? SPIRIT (0.9 arcsec @ 60 µm)

Water mapping on Neptune @ 60 µm Desired Measurement Capabilities

Parameter	Units	Value or Range
Wavelength range	μm	60
Angular resolution	arcsec	0.5 arcsec
Spectral resolution, $(\lambda/\Delta\lambda)$	dimensionless	3000
Continuum sensitivity	μͿγ	100
Spectral line sensitivity	10 ⁻¹⁹ W m ⁻²	0.2
Instantaneous FoV	arcmin	5 x 5 arcsec
Number of target fields	dimensionless	
Field of Regard	sr	

b. H₂O mapping of Neptune @ 1670 GHz

On Jupiter with HIFI (1670 GHz)


Beam = 13 arcsec (Cavalié et al.2013 ->)

Required on Neptune (2 arcsec):

Beam = 1 arcsec

Fcont(N) = 30 Jy

Fline = $60 \ 10^{-19} \ \text{W/m}^2$

-> Sensitivity: Factor 170 vs Herschel/HIFI

Spatial resolution: 40 m baseline interferometer

Which instrument? ESPRIT

Water mapping on Neptune @ 1670 GHz Desired Measurement Capabilities (Second priority)

Parameter	Units	Value or Range
Wavelength range	μm	180 (1670 GHz)
Angular resolution	arcsec	1 arcsec
Spectral resolution, $(\lambda/\Delta\lambda)$	dimensionless	10 ⁶
Continuum sensitivity	μЈу	3000
Spectral line sensitivity	10 ⁻¹⁹ W m ⁻²	0.2
Instantaneous FoV	arcmin	5 x 5 arcsec
Number of target fields	dimensionless	
Field of Regard	sr	

Conclusions Killer apps in atmospheric sciences

- Search for water envelopes around distant small bodies
 - Heterodyne spectroscopy required
 - CALIPSO, MMSO
- Water mapping on the brightest small bodies
 - Het. Spectroscopy + high angular resolution required
 - ESPRIT
- Water mapping on Uranus and Neptune
 - High angular resolution required
 - Possible at 60 mm with R = 3000 (SPIRIT)
 - Possible at 1670 GHz with $R = 10^6$ (ESPRIT)
- In all cases: synergy with ALMA (CO, HCN,...)